Simulation of the Electrical and Thermal Properties of Graphene Field Effect Transistor

  • Arin Dutta
  • Fathema Farjana
  • Md. Siddukur Rahman
  • Zahid Hasan Mahmood


In this research work, the electrical and thermal properties of Graphene field effect transistor (GFET) has been simulated by varying the width of graphene channel. Here, the electrical characteristics, like electron density, hole density, I-V Characteristics and charge carrier velocity profile in the channel region has been studied for three different values of graphene channel width- 1 nm, 2 nm and 3 nm. To analyze the thermal properties of the GFET device, the temperature profile of the graphene channel has been simulated for 1, 2 and 3 nm channel width. After analyzing the simulation of this characteristics, it is concluded that, both electrical and thermal properties of GFET can be improved by fabricating the channel with larger width in the GFET device.


1 R. Chau, S. Datta, M. Doczy, B. Doyle, B. Jin, J. Kavalieros, A. Majumdar, M. Metz, M. Radosavljevic. "Benchmarking Nanotechnology for High-Performance and Low-Power Logic Transistor Applications", IEEE Trans. Nanotechnology, Vol. 4, No. 2, 2005.
2 Y.-M. Lin, J. Appenzeller, C. Zhihong, Z.-G. Chen, H.-M. Cheng, P. Avouris, "High-performancedual-gate carbon nanotube FETs with 40-nm gate length", IEEE Electron Dev. Lett., Vol. 26, No. 11, 2005.
3 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films", Science, Vol. 306, pp. 666-669, October 2004.
4 Y.Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, "Experimental observation of the quantum Hall effect and Berry's phase in graphene", Nature, Vol. 438, pp. 201-204, November 2005.
5 Cervenka, J. et al. Graphene field effect transistor as a probe of electronic structure and charge transfer at organic molecule-graphene interfaces, Nanoscale 7, 1471–1478, 2014.
6 Lee, S. K. et al. Inverse transfer method using polymers with various functional groups for controllable graphene doping. ACS Nano 8, 7968–7975, 2014.
7 Song, H. S. et al. Origin of the relatively low transport mobility of graphene grown through chemical vapor deposition. Sci. Rep. 2, 337, 2012.
PMid:22468224 PMCid:PMC3313616
8 Batzill, M. The surface science of graphene: metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf. Sci. Rep. 67, 83–115, 2012.
9 Kumar, B. et al. The role of external defects in chemical sensing of graphene field-effect transistors. Nano Lett. 13, 1962–1968, 2013.
10 Connelly, L. S. et al. Graphene nanopore support system for simultaneous highresolution afm imaging and conductance measurements. ACS Appl. Mater. Interfaces 6, 5290–5296, 2014.
PMid:24581087 PMCid:PMC4232248
11 Levesque, P. L. et al. Probing charge transfer at surfaces using graphene transistors. Nano Lett. 11, 132–137, 2011.
12 B. Lee, S. Y. Park, H. C. Kim, K. J. Cho, E. M. Vogel, M. J. Kim, R. M.Wallace, and J. Kim, Appl. Phys. Lett. 92, 203102, 2008.
13 Y. Xuan, Y. Q. Wu, T. Shen, M. Qi, M. A. Capano, J. A. Cooper, and P. D.Ye, Appl. Phys. Lett. 92, 013101, 2008.
14 Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, andP. Avouris, NanoLett. 9, 422, 2009.
15 Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726, 2010.

Simulation of the Electrical and Thermal Properties of Graphene Field Effect Transistor
How to Cite
DUTTA, Arin et al. Simulation of the Electrical and Thermal Properties of Graphene Field Effect Transistor. Journal of Energy Technology Research, [S.l.], v. 1, n. 1, p. 13-18, feb. 2017. ISSN 2514-4715. Available at: <>. Date accessed: 20 jan. 2018. doi:

Most read articles by the same author(s)