Dynamic model for high-speed rotors based on their experimental characterization

  • L. A. Montoya
  • E. E. Rodríguez
  • H. J. Zúñiga
  • I. Mejía

Abstract

Rotating systems components such as rotors, have dynamic characteristics that are of great importance to understand because they may cause failure of turbomachinery. Therefore, it is required to study a dynamic model to predict some vibration characteristics, in this case, the natural frequencies and mode shapes (both of free vibration) of a centrifugal compressor shaft. The peculiarity of the dynamic model proposed is that using frequency and displacements values obtained experimentally, it is possible to calculate the mass and stiffness distribution of the shaft, and then use these values to estimate the theoretical modal parameters. The natural frequencies and mode shapes of the shaft were obtained with experimental modal analysis by using the impact test. The results predicted by the model are in good agreement with the experimental test. The model is also flexible with other geometries and has a great time and computing performance, which can be evaluated with respect to other commercial software in the future.

References

1. C.R. Morrison, A. Provenza, A. Kurkov, G. Montague, K. Duffy, O. Mehmed, D. Johnson and R. Jansen. Fully suspended, five-axis, three-magnetic-bearing dynamic spin ring with forced excitation. Society for Experimental Mechanics, 2005, Vol. 45, No. 3, pp. 226-237.
https://doi.org/10.1007/BF02427946
2. G. Szász, G.T. Flowers and R.J. Hartfield. Hub-based vibration control of multiple rotating airfoils. Journal of Propulsion and Power, 2000, Vol. 16, No. 6, pp. 1155-1163.
https://doi.org/10.2514/2.5692
3. J.C.I Chang. Integrated research approach to attack engine HFC problem. Proceedings of the ASME Aerospace Division American Society of Mechanical Engineers, ASME, 1996, Vol. 52, pp. 313-320.
4. C.B. Meher-Homji. Blading vibration and failures in gas turbines Part A: Blading dynamics & the operating environment. ASME, 1995, pp. 1-11.
5. M. Shahgholi, S.E. Khadem and S. Bad. Free vibration analysis of a nonlinear slender rotating shaft with simply support conditions. Mechanism and Machine Theory, 2014, Vol. 82, pp. 128-140.
https://doi.org/10.1016/j.mechmachtheory.2014.08.005
6. D. Kozanecka, Z. Kozanecki and T. Lech. Experimental identification of dynamic parameters for active magnetic bearing. Journal of Theoretical and Applied Mechanics, 2008, Vol. 46, No. 1, pp. 41-50.
7. Y. Zhang and Z. Du. Dynamic characteristics calculation study of a gas turbine rod fastening rotor. Power Engineering Conference, APPEEC 2009. Asia-Pacific, IEEE, 2009, pp. 1-4.
https://doi.org/10.1109/APPEEC.2009.4918298
8. G. Xu, J. Zhou, H. Geng, M. Lu and W. Cheng. Unbalance response analysis of the circumferential tie-rod combined rotor considering different support. International Conference on Mechatronics and Automation (ICMA), IEEE, 2014, pp. 1323-1328.
https://doi.org/10.1109/ICMA.2014.6885891
9. M. Lu, H. Geng, B. Yang and L. Yu. Finite element method for disc-rotor dynamic characteristics analysis of gas turbine rotor considering contact effects and rod preload. International Conference on Mechatronics and Automation (ICMA), IEEE, 2010, pp. 1179-1183.
https://doi.org/10.1109/ICMA.2010.5587948
10. H. Taplak and M. Parlak. Evaluation of gas turbine rotor dynamic analysis using the finite element method. Measurement, 2012, Vol. 45, No. 5, pp. 1089-1097.
https://doi.org/10.1016/j.measurement.2012.01.032
11. N.D. Pagar and S.H. Gawande. Investigations of dynamic characteristics of eccentric rotary shaft of wankelengine. Journal of Mechanical Design and Vibration, 2014, Vol. 2, No. 2, pp. 53-59.
12. J.J. Wu. Prediction of lateral vibration characteristics of a full-size rotor-bearing system by using those of its scale models. Finite Elements in Analysis and Design, 2007, Vol. 43, pp. 803-816.
https://doi.org/10.1016/j.finel.2007.05.001
13. R. Fegade, V. Patel, R.S. Nehete and B.M. Bhandarkar. Unbalanced response of rotor using ansys parametric design for different bearings. International Journal of Engineering Sciences & Emerging Technologies, 2014, Vol. 7, No. 1, pp. 506-515.
14. I. Ramírez Vargas, L.M. Palacios Pineda and H. Corro Hernández. Respuesta vibratoria de un rotor apoyado en chumaceras hidrodinámicas cortas. Memorias del XIX Congreso Internacional Anual de la SOMIM, 2013, pp. 1085-1093.
15. J.J. Moore, G. Vannini, M. Camatti and P. Bianchi. Rotordynamic analysis of a large industrial turbocompressor including finite element substructure modeling. Journal of Engineering for Gas Turbines and Power, ASME, 2010, Vol. 132, No. 8, pp. 082401-082401-9.
16. Ranjan K. Behera, Anish Pandey and Dayal R. Parhi. Numerical and experimental verification of a method for prognosis of inclined edge crack in cantilever beam based on synthesis of mode shapes. Procedia Technology, 2014, Vol. 14, pp. 67-74.
https://doi.org/10.1016/j.protcy.2014.08.010
17. A. Entezari, M. Filippi and E. Carrera. On dynamic analysis of variable thickness disks and complex rotors subjected to thermal and mechanical prestresses. Journal of Sound and Vibration, 2017, Vol. 405, pp. 68-85.
https://doi.org/10.1016/j.jsv.2017.05.039
18. F. Bakhtiari-Nejad, A. Khorram and M. Rezaeian. Analytical estimation of natural frequencies and mode shapes of a beam having two cracks. International Journal of Mechanical Sciences, 2014, Vol. 78, pp. 193-202.
https://doi.org/10.1016/j.ijmecsci.2013.10.007
19. Jong-Shyong Wu and Chin-Tzu Chen. A lumped-mass TMM for free vibration analysis of a multi-step Timoshenko beam carrying eccentric lumped masses with rotary inertias. Journal of Sound and Vibration, 2007, Vol. 301, pp. 878-897.
https://doi.org/10.1016/j.jsv.2006.10.022
20. H.J. Kang, W.D. Xie and T.D. Guo. Modeling and parametric analysis of arch bridge with transfer matrix method. Applied Mathematical Modelling, 2016, Vol. 40, pp. 10578-10595.
https://doi.org/10.1016/j.apm.2016.07.009
21. E. Al-Bahkali and M. ElMadany. Dynamic analysis of rotating machinery using computer aided design approach. Proceedings of STCEX, 2004, Vol. 3, pp. 192-201.
22. Ahmed M. Ellakany. Calculation of higher natural frequencies of simply supported elastic composite beams using Riccati matrix method. Meccanica, 2008, Vol. 43, pp. 523-532.
https://doi.org/10.1007/s11012-008-9131-9
23. J.W. Zu and Z. Ji. An improved transfer matrix method for steady-state analysis of nonlinear rotor-bearing systems. Journal of Engineering for Gas Turbines and Power, 2002, Vol. 124, pp. 303-310.
https://doi.org/10.1115/1.1447235
24. Rohit Tamrakar and N.D. Mittal. Modal behaviour of rotor considering rotary inertia and shear effects. Perspectives in Science, 2016, Vol. 8, pp. 87-89.
https://doi.org/10.1016/j.pisc.2016.04.003
25. J.M. Vance. Rotordynamics of turbomachinery. New York: Wiley, 1988, pp. 57-137.
26. D.W. Childs. Turbomachinery rotordynamics: Phenomena, modeling, and analysis. New York: Wiley, 1993, pp. 104-111.
27. G. Mogeiner, T.N. Baranger, R. Dufour, L. Durantay and N. Baras. Efficient model development for an assembled rotor of an induction motor using a condensed modal functional. Journal of Computational and Nonlinear Dynamics, 2011, Vol. 6, pp. 1-8.
https://doi.org/10.1115/1.4002381
28. M.H. Jalali, M. Ghayour, S. Ziaei-Rad and B. Shahriari. Dynamic analysis of a high speed rotor-bearing system. Measurement, 2014, Vol. 53, pp. 1-9.
https://doi.org/10.1016/j.measurement.2014.03.010
29. M. Boiangiu, V. Ceausu and C.D. Untaroiu. A transfer matrix method for free vibration analysis of Euler-Bernoulli beams with variable cross section. Journal of Vibration and Control, 2014, pp. 1-12.
30. A. Bencomo Angeles, E. Hernández Marceliz, A.C. García Reynoso and E.L. de Guevara Durán. Determinación de las características dinámicas de un rotor flexible experimental usando el método de Holzer. Memorias del XVI Congreso Internacional Anual de la SOMIM, 2010, México, pp. 1-9.
31. D. Violante, F. Palmieri and A. Kiempnow. Aplicación del método de la matriz de transferencia para la determinación de las formas modales y velocidades críticas en rotores flexibles. III Congreso Argentino de Ingeniería Mecánica (CAIM), 2012, Argentina, pp. 1-12.
32. H.Y. Lin. On the natural frequencies and mode shapes of a multispan Timoshenko beam carrying a number of various concentrated elements. Journal of Sound and Vibration, 2009, Vol. 319, pp. 593-605.
https://doi.org/10.1016/j.jsv.2008.05.022

Published
2017-07-08
How to Cite
MONTOYA, L. A. et al. Dynamic model for high-speed rotors based on their experimental characterization. Application and Theory of Computer Technology, [S.l.], v. 2, n. 4, p. 25-34, july 2017. ISSN 2514-1694. Available at: <https://www.archyworld.com/journals/index.php/atct/article/view/108>. Date accessed: 19 mar. 2019. doi: https://doi.org/10.22496/atct.v2i4.108.
Section
Articles