Article

Learners’ perceptions of instructor feedback in e-learning courses – findings from HBMSU, United Arab Emirates

Niyi Awofeso 1,* Moyosola Bamidele 2

1 School of Heath and Environmental Studies, Hamdan Bin Mohammed Smart University, P.O. Box 71400, Dubai Academic City, UAE; a.awofeso@hbmsu.ac.ae
2 Department of Statistics, University of Ilorin, Ilorin, Nigeria; Bamidelemoyo@gmail.com

* Correspondence: a.awofeso@hbmsu.ac.ae; Tel.: +97 144 241 018

Received: 3-March-2017; Accepted: 29-March-2017; Published: 31-March-2017

Abstract: Instructor feedback is constructive and specific information provided by an instructor to a learner on his or her course work and/or class contributions in relation to the course objectives and expectations. This study examined the perceptions of 66 undergraduate and postgraduate learners on feedback provided in eight online courses. Correlation and polytomous Rasch model was utilized to analyze the data with Winsteps and STATA. Analysis of the 20 survey questions revealed a real person reliability of 0.82 and a Cronbach Alpha test reliability of 0.96. Results show a significant positive relationship – effective instructor feedback positively associated with learners’ perceived learning in, and satisfaction with, technology-mediated learning programs at university level (r = 1, p<0.001). The item mapping analysis shows for the student efficient instructor feedback evaluation; the mean for the students is much higher than the mean of the items, that it’s that the process and content of instructor feedback was at least adequate to enhance their learning. Our results indicate that systematic collection and analysis of learners’ feedback comments have a strong potential to enhance feedback competencies of course facilitators, as well as provide a common platform for both learners and course facilitators vis-à-vis the diverse objectives of instructor feedback.

Keywords: Instructor feedback survey, learner-centricity public health courses, technology-mediated learning, United Arab Emirates

1. Introduction and Conceptual Framework

The importance constructive feedback in enhancing learning has its theoretical origins in the communication theories described in the book titled; “The mathematical theory of communication” [1]. The authors analysed diverse communication problems at three levels: How accurately can the symbols of communication be transmitted? (The technical problem); How precisely do the transmitted symbols convey the desired meaning? (The semantic problem); How effectively does the received meaning affect conduct in the desired way? (The effectiveness problem). In the learning context, feedback may be defined as any communication given to inform a learner of the accuracy of a response, usually to some form of instructional question [2]. The definition of online feedback is information from an educator, peer, or other in an online format, such as the written word, audio file, video, pre-programmed automatic reply, or live web-based conferencing.
In online learning contexts, both web-based technology factors and basic instructional factors play significant roles in the efficiency of the feedback process. Efficient instructor feedback is one that facilitates quality and coverage of feedback processes promptly and with optimal use of available learning technologies. Feedback is one of the seven principles for good teaching practice in undergraduate education [3]. The principles of feedback they espoused entailed: addressing learners by name; provide frequent feedback; provide prompt feedback; provide balanced feedback; provide specific feedback; use positive tone; and ask questions to promote thinking. These principles facilitate efficiency of the feedback process. The 2011 survey titled *Going the Distance: Online Education in the United States 2011*, estimated that 6.1 million tertiary education students (i.e. 31%) enrolled in at least one online course during 2010 [4]. With the expansion of online learning programs globally, peer-feedback is increasingly becoming a common approach to providing feedback, with its generally sub-optimal quality somewhat compensated for by frequency and volume [5].

Instructor feedback takes several forms. Corrective instructor feedback, which is usually focused on specific content of the task performance, may be categorized as; no feedback given, simple verification or knowledge of results, knowledge of correct response, elaborated feedback, and try-again feedback [6]. Given that this is a core rationale for feedback in instructional settings, corrective feedback should be incorporated into most instructor feedback responses. A second category of feedback is motivational, which is learner focused, and provides positive reinforcement for quality performance as well as assist the learner in continuing effort despite challenges and setbacks. Motivation impacts the depth and enthusiasm with which learners perform learning tasks, and high instructor (or peer) motivation is positively correlated with high-perceived learning and superior perceived learning application [7]. A third category is technology feedback. As Mory posits: “there is ever-increasing need to consider how new technologies…change and impact feedback, its forms, and its dynamic potential for use in instructional settings” [8]. The use of Backboard and Moodle platforms has significantly improved technology-mediated feedback. Online feedback using these platforms is currently presented with grades and learning materials, thus placing them ‘in context’ and providing a direct connection, making it easier for learners to understand the assessment processes course instructors go through to arrive at a grade. Technology also enables the use of Feedback Wizard, which provides feedback responses from a bank of pre-populated comments, which may then be refined by course instructors with more personalized comments, when applicable [9].

Over the past two decades, online learning has evolved from an instructor-centred to a student-centred paradigm; instructionist and constructivist models underpin these paradigms respectively [10]. This paradigm shift necessitates greater prominence of instructor feedback in providing guideposts, mentoring and coaching learners, and designing assessments which by themselves provide feedback on learning milestones. In Race’s work, he discusses the use of feedback in facilitating (online) learning by segmenting feedback categories of conscious competence – where learners know that they have performed well in an assignment and feedback is geared towards taking ownership of their success; conscious incompetence – where feedback is focused on helping learners to become better at things they already know they can’t yet do; unconscious incompetence – using timely and constructive feedback to help learners find out much more about what they didn’t yet know that they couldn’t yet do; unconscious competence – tactful feedback may be utilised to move unconscious competencies towards the conscious level, invariably leading to increased motivation and self-esteem for the learner [11]. He discussed occasional trade-offs between feedback types and learning efficiency. For example, although one-to-one face-to-face feedback provides a high learning pay-off, it is not efficient in terms of instructor’s time, especially in courses with large enrolments.
Conversely, one-to-many communication and automated feedback using an answer bank for frequently asked questions may be efficient, but does not usually foster high levels of learning.

Several authors highlighted the importance of instructor social presence – defined as the degree of salience of the other person in the (mediated) interaction and the consequent salience of the interpersonal relationships – in online learning [12,13]. They showed that instructors who exhibited effective online presence by creating a sense of online community and providing timely feedback facilitated high learner satisfaction and higher self-reported learning quality. In Palmer and Holt work, they identified instructor feedback for online to be critical to learners’ course experience [14]. Yet, participants reported low satisfaction with the instructors’ feedback activities, particularly in relation to having a clear understanding of what was required to succeed in the unit and how well they thought they were performing in the unit. Such findings highlight the need for course instructors to be highly skilled in providing comprehensive feedback to learners. A study of determinants of undergraduate student satisfaction in a blended course at Ajman University of Science and Technology found, among 108 participants, that the instructor’s feedback is the most important factor in satisfaction with instruction [15].

A conceptual framework for appraising learners’ perceptions and approaches to learning is shown in Figure 1 [16]:

![Figure 1: Learning context, student perceptions and approaches to learning](image)

The framework shows that feedback is one of the important influences on learner perception and ultimately on their approach to learning. Understanding how learners perceive their learning contexts at university is as vital as understanding how these perceptions influence students’ approaches to their studies. Entwistle emphasized that “high quality learning depends not just on pass or completion rates, but on the nature of the knowledge, skills and conceptual understanding that students have acquired during their degree course” [17].

In this study, we explore the perceptions of 66 online undergraduate and postgraduate public health learners at Hamdan Bin Mohammed Smart University to feedback provided by an Instructor over two semesters, as well as the process of efficient learner feedback. Our two research questions were:

Is efficient instructor feedback positively associated with learners’ perceived learning in, and satisfaction with, technology-mediated learning programs at university level?
How can the evaluations of learners’ perceptions of instructor feedback processes be utilized in improving the quality and other attributes of instructor feedback as well as learners’ approaches to learning?

2. Materials and Methods

Hamdan Bin Mohammed Smart University is the first online university in the Middle East and North African region. The university is equipped with the latest Moodle online learning platform, and was recently an ‘Extraordinary Contribution Award’ by Ellucian, a global leader in providing innovative technology solutions for higher education institutions. The study participants comprised 66 (89%) out of 74 participants who were invited to participate in any anonymous and voluntary/optional instructor feedback survey of eight courses taught by the same instructor between August 2014 and September 2015. The survey was conducted online using Moodle’s Virtual Learning Environment. The survey instrument used was the Likert Scale feedback assessment template [18], which comprised of 20 questions to ascertain learners’ perspectives of the content and process of efficient instructor feedback.

Correlation analysis and one-parameter Item Response Theory model was utilized, commonly known as the Rasch Model, using Winsteps software [19]. Winsteps implements the Andrich “rating scale” model with the Joint Maximum Likelihood Estimation method, also known as UCON, which does not assume a person distribution and is flexible with missing data [20]. The Rasch model used in Winsteps for this analysis is the polytomous “Rating Scale” model with the equation: Log $P_{nij}/P_{n(i-1)} = B_n - D_i - F_j$, where P_{nij} probability that person n encountering item i is observed in category j, B_n is the “ability” or rater-severity measure of person n, D_i is the difficulty-to-endorse measure of item i, and F_j is the “calibration” measure of category j relative to category P_{nij} B_n D_i F_j (j-1) [21].

Throughout the analysis, several results were produced. A statistical summary table is generated to show the fit indices of student and item. There are two types of fit indices i.e. the mean square (MNSQ) and standardized fit statistics (ZSTD). The acceptable range of weighted MNSQ for a Likert scale item is from 0.6 to 1.4 [22]. The acceptable range also holds true by following the general rule of mean ± standard deviation. The acceptable range weighted ZSTD values is between -2 and 2, whereas the optimum unweighted ZSTD for student is below 5. Fit statistics of items and students were checked at first and misfit items or students should be excluded from further analyses due to the violation of model assumption or redundancy [23].

3. Results

Findings show that on average, about 73% of the undergraduate and postgraduate of students responded Mostly Agree or Completely Agree to the evaluation questions, indicating that the majority of respondents were satisfied with the process and content of feedback provided by the instructor. The category measures the evaluations increased as the categories increased (see appendix I).

Table 1 provides an overview of the reliability estimates. The real separation reliability is highlighted above and is comparable to a Cronbach’s alpha estimate. Here, “real” indicates that the estimated standard errors of measurement have been adjusted for any misfit encountered in the data. The real person reliability of 0.82 suggests that the scale discriminates well between the persons. The real item separation reliability of 0.77 suggests that the questions are reliable in measuring the proper item. INFIT and OUTFIT ZSTD statistics are also reported in Table 2. OUTFIT ZSTDs are the standardized unweighted item and person fit statistics. These estimates are sensitive to unexpected
rare extremes. INFIT ZSTDs are standardized information-weighted item and person fit statistics. These estimates are sensitive to irregular inlying patterns. When the data fit the model, these statistics are approximately t-statistics. For this setting, the approximate t-statistics would have a mean of 0 and standard deviation of 1. Here (highlighted), the mean is close to 0 in both cases; however the standard deviation is high suggesting that there are some items that misfit and there is more variability in the fit of the students than expected [24]. Table 2 presents a summary of the individual item statistics. Values less than −2 are ‘muted’, meaning redundancy or error trends exist; values greater than 2 are ‘noisy, an indication of unexpected or inconsistent irregularities [23]. Highlighted items above are 3 and 11.

Research Question One:

Is efficient instructor feedback positively associated with learners’ perceived learning in, and satisfaction with, technology-mediated learning programs at university level?

The result in Table 3 above shows a significant positive relationship – effective instructor feedback positively associated with learners’ perceived learning in, and satisfaction with, technology-mediated learning programs at university level ($r = 1, p<0.001$).

Research Question Two

How can the evaluations of learners’ perceptions of instructor feedback processes be utilized in improving the quality and other attributes of instructor feedback as well as learners’ approaches to learning?

Figure 2 documents item difficulties on right side of the mapping. Item difficulty is a measure of the difficulty of endorsement for an item. An item placed above another item is said to be more
difficult to endorse then the lower item. Person difficulty, found on the left side of the mapping, is a measure of the individual’s level of agreement with the items. A person higher on the chart would find an item easier to endorse, or more likely to agree with the item, than a person who was placed lower on the figure.

In figure 2, each “#” represents one postgraduate and “.” represents one undergraduate student and the mean of these students’ ability, or level of agreeableness for the students is found on the left side of the figures and is denoted with an “M”. The mean of the item difficulties, or difficulty to endorse, is also denoted with an “M” and is located on the right side of the figures. For the student efficient instructor feedback evaluation, the mean for the students is much higher than the mean of the items. This agrees with the previous finding that overall, most students agreed or strongly with the items, i.e. that the process and content of instructor feedback was at least adequate to enhance their learning.

4. Discussion

This study provides answers to the two research questions posed. Our validated survey instruments have been formulated to ascertain the influence of feedback in learners’ perceived learning in, and satisfaction with, technology-mediated learning. The correlation findings shows a significant positive relationship ($r = 1, p<0.001$), which implies that the first research question is achieved - efficient instructor feedback positively associated with learners’ perceived learning in, and satisfaction with, technology-mediated learning programs at university level. The second research question states: How can the evaluations of learners’ perceptions of instructor feedback processes be utilized in improving the quality and other attributes of instructor feedback as well as learners’ approaches to learning? Result from the item mapping analysis shows for the student efficient instructor feedback evaluation; the mean for the students is much higher than the mean of the items. This agrees with the previous finding that overall, most students agreed or strongly with the items, i.e. that the process and content of instructor feedback was at least adequate to enhance their learning. In most universities, gaining (and responding effectively to) student feedback on courses and lecturers is increasingly important for universities to provide clear evidence of the ‘value’ of studying at their institution. With improvements to feedback processes based on learners’ perspectives, lecturers become more aware of the major potential of effective feedback in facilitating learning. Most formal university surveys of learners’ perception of teaching include only one or two questions on feedback, which may not adequately elaborate on the role of learners feedback in improving both students’ approaches to learning and the quality of feedback provided by surveyed instructors. This study provides a clear example of how results from analysis of a comprehensive survey instrument enhances learners’ appreciation of the pathways through which instructor feedback can enhance their learning experience, while concurrently improving the feedback competencies of course instructors.

Efficient instructor feedback plays a crucial role in enhancing learners’ academic achievement, in part though justification of grade derivation, identifying and acknowledging learners’ commendable scholarly initiatives, outlining steps for improvement of academic work, and developing in learners the capability to monitor, regulate and evaluate their learning [25]. Effective feedback should be efficient so that learners can benefit individually and collectively
in a timely manner, and instructors can manage the feedback activities using smart technology-mediated and writing tools without being over-burdened. The feedback instrument utilised in this study comprehensively addresses the diverse objectives of instructor feedback and therefore addresses common reasons why many learners find instructor feedback unsatisfactory, such as whether and how the feedback is related to their mark, and what they might do to improve. If instructors agree with the objectives of the feedback process contained in our study instrument prior to commencement of a course or discussion forum activity, it might mitigate most of the challenges experienced by instructors, such as the time-consuming nature of individualized feedback. Course instructors benefit from timely feedback by being able to adjust the teaching approach to learners comments and concerns.

To the best of our knowledge, ours is the first study to examine students’ perception of instructor feedback in the Middle East and North Africa region. Studies which have investigated the determinants of students’ perceived learning outcomes and satisfaction in university online education in other regions with advanced e-learning systems have consistently rated timely, comprehensive and motivational instructor feedback highly in the list of self-reported facilitators of in-depth learning [26]. The quality and coverage of instructor feedback covered by this survey is huge, and it is impractical to assume that course instructors will view the objectives of instructor feedback through this lens. It is therefore important that universities who expect instructor feedback to meet these diverse objectives undertake seminars on instructor feedback and other student-instructor interaction variables during staff orientation, in addition to enhancing the competencies of instructors to craft learning activities that promote interaction with the content, the instructor and the learners in the class [27].

A noteworthy limitation of this study is the small sample size of 66 participants, although this represented 89% of the 74 invited participants enrolled in courses taught by the same instructor during the review period. In addition, there was no open-ended section for learners to describe their perspectives about the content and process of effective instructor feedback. However, we believe that 20 Likert-scale questions possessed adequate depth and coverage for our study [18]. Convincing online academic staff to expose themselves to learner’s scrutiny in relation to students’ perceptions about diverse aspects of their feedback is a difficult task, but an essential one in order to consistently improve the effectiveness of online learning beyond what currently obtains in the traditional classroom learning format [28] Our study’s noteworthy contributions to the literature on instructor feedback includes the successful use of a comprehensive feedback instrument in a blended learning environment for undergraduate and postgraduate public health degree programs, as well as providing a platform for learners and course instructors to develop a shared understanding of the objectives of efficient instructor feedback. The frustration expressed by some learners that instructor feedback is generally cryptic, and by some instructors that time-consuming feedback is not being used to good effect, if at all, by learners [29] may be addressed by being explicit about the details of feedback processes, ensuring that feedback activities accord with the 20 stated objectives of instructor
feedback, letting learners understand why they are getting individualized or group feedback, and how their learning can benefit from their reflecting, and acting, on feedback [30].

5. Conclusions

Our results indicate that systematic collection and analysis of learners’ feedback comments have a strong potential to enhance feedback competencies of course facilitators, as well as provide a common platform for both learners and course facilitators vis-à-vis the diverse objectives of instructor feedback.

Author Contributions: Prof. Niyi Awofeso conceptualized the research topic and was primarily responsible for anonymous data collection from his courses. He conducted the literature review. Dr. Moyoso Bamidele was solely responsible for data analysis and interpretation of results. Both authors reviewed and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix

INPUT: 66 PERSONS 20 ITEM REPORTED: 66 PERSONS 20 ITEM 6 CATS MINISTEP 3.74.0

<table>
<thead>
<tr>
<th>TOTAL</th>
<th>MODEL</th>
<th>INFIT</th>
<th>OUTFIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCORER</td>
<td>COUNT</td>
<td>MEASURE</td>
<td>ERROR</td>
</tr>
</tbody>
</table>

MEAN	101.6	20.0	2.38	.39	.98	-.1	1.00	.0
S.D.	11.5	.0	1.50	.16	.43	1.2	.46	1.2
MAX.	119.0	20.0	5.89	1.02	2.16	2.6	2.34	2.9
MIN.	65.0	20.0	-.48	.21	.33	-2.5	.36	-2.3

REAL RMSE .45 TRUE SD 1.44 SEPARATION 3.21 PERSON RELIABILITY .91 |
MODEL RMSE .43 TRUE SD 1.44 SEPARATION 3.38 PERSON RELIABILITY .92 |
S.E. OF PERSON MEAN = .22

MAXIMUM EXTREME SCORE: 20 PERSONS

SUMMARY OF 66 MEASURED (EXTREME AND NON-EXTREME) PERSON

<table>
<thead>
<tr>
<th>TOTAL</th>
<th>MODEL</th>
<th>INFIT</th>
<th>OUTFIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCORER</td>
<td>COUNT</td>
<td>MEASURE</td>
<td>ERROR</td>
</tr>
</tbody>
</table>

| MEAN | 107.2 | 20.0 | 3.82 | .83 | | |
| S.D. | 12.8 | .0 | 2.52 | .68 | | |
Table 1: Rasch analysis of learners’ survey responses

<table>
<thead>
<tr>
<th>ENTRY</th>
<th>TOTAL</th>
<th>MODEL</th>
<th>INFIT</th>
<th>OUTFIT</th>
<th>PT-MEASURE</th>
<th>EXACT MATCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBER</td>
<td>SCORE</td>
<td>COUNT</td>
<td>MEASURE</td>
<td>S.E.</td>
<td>MNSQ ZSTD</td>
<td>MNSQ ZSTD</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>11</td>
<td>372</td>
<td>66</td>
<td>-.06</td>
<td>.251</td>
<td>1.86</td>
<td>2.91</td>
</tr>
<tr>
<td>5</td>
<td>366</td>
<td>66</td>
<td>-.65</td>
<td>.251</td>
<td>1.46</td>
<td>2.01</td>
</tr>
</tbody>
</table>
Table 2: Infit-Outfit measures

<table>
<thead>
<tr>
<th>MEASURE</th>
<th>PERSON - MAP - ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><more></td>
</tr>
<tr>
<td>6</td>
<td>#</td>
</tr>
<tr>
<td></td>
<td>#</td>
</tr>
<tr>
<td></td>
<td>.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>#</td>
</tr>
<tr>
<td></td>
<td>#</td>
</tr>
<tr>
<td></td>
<td>#</td>
</tr>
</tbody>
</table>

MEASURE

- **MEASURE**: Infit-Outfit measures
- **PERSON - MAP - ITEM**: Detailed measurements for each item and person, indicating fit and outfit statistics.
+T helped me identify my strengths
+ helped me identify areas of needed improvement
+ been individualized to my performance
+ built my confidence
+ stimulated me to reflect on what is still unknown
+ promoted my active involvement in learning
+ provided in a manner that is encouraging
+ supported my self-directed learning
+ has been provided frequently through
+ helped me evaluate my progress in the course
+ provided direction of the learning process
+ stimulated me to reflect on what I have learned
+ encouraged me to interact with my instructor
+ stimulated further learning about the topic
+ increased my level of knowledge about the course
+ included both positive comments and challenges
+ challenged me to think more deeply about the topic.
helped me to build new knowledge about

-1
+T been provided in a timely manner

EACH "#" IS 2. EACH "." IS 1.

Figure 2: variable mapping for student perception on efficient instructor feedback.

References

© 2016 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).