Predictive Models of Chloride Penetration in concrete: An Overview

  • Anwar Khitab
  • Waqas Anwar
  • Mohammad Tausif Arshad

Abstract

Abstract: This article presents a brief review of the models aimed to predict the penetration of chloride ions in concrete. The work highlights the two well-known approaches i.e. Fick's laws and Nernst-Planck equation. Difference of opinion about the two approaches as well as within each approach is also elaborated. Diverse accelerated methods for determining the chloride diffusivity in concrete are also described. Different numerical schemes and analytical solutions as adapted in the models are also mentioned. Effort is made to present the models in a chronological way and therefore the presented list is not exhaustive.

References

1. Khitab, Anwar. "Modélisation des transferts ioniques dans les milieux poreux saturés: application à la pénétration des chlorures à travers les matériaux cimentaires." PhD diss., Thèse de doctorat, Toulouse, France, 2005.
2. Khitab, A., S. Lorente, and J. P. Ollivier. "Predictive model for chloride penetration through concrete." Magazine of Concrete Research 57.9 (2005): 511-520.
https://doi.org/10.1680/macr.2005.57.9.511
3. A. E. Fick, Poggendroff's Annalen der Physik, 94, 59, (1855).
https://doi.org/10.1002/andp.18551700105
4. J. Crank, The Mathematics of Diffusion, Oxford science publications, Clarendon Press, 1979.
5. M. Collepardi, A. Marcialis, R. Turriziani. The kinetics of chloride ions penetration in concrete, Il Cemento, 67, 157-164, (1970).
6. L. Song, W. Sun, , J. Gao. Time dependent chloride diffusion coefficient in concrete. Journal of Wuhan University of Technology-Mater. Sci. Ed.,28(2), pp 314-319. DOI 10.1007/s11595-013-0685-6.
https://doi.org/10.1007/s11595-013-0685-6
7. K. Takewaka and S. Matsumoto. Quality and cover thickness of concrete based on the estimation of chloride penetration in marine environments. Proceedings of 2nd International Conference on Concrete in Marine Environment, ACI SP-109, 381-400, 1988.
8. Maage, M., Poulsen, E., Vennesland, Ø. and Carlsen, J-E. Service Life Model for Concrete Structures Exposed to Marine Environment – Initiation Period, LIGHTCON Report No. 2.4, STF70 A94082 SINTEF, Trondheim, 1995.
9. Boddy A, Bentz E, Thomas MDA, et al. Overview and Sensitivity Study of a Multimechanistic Chloride Transport Model. Cement and Concrete Research, 1999, 29(6):827-837.
https://doi.org/10.1016/S0008-8846(99)00045-9
10. Mangat PS, Molloy BT. Prediction of Long Term Chloride Concentration in Concrete. Matériaux et Constructions, 1994, 27(170): 338-346.
https://doi.org/10.1007/bf02473426
11. L.O. Nilsson et al. HETEK, A system for estimation of chloride Ingress into concrete, Theoretical background. Report No. 83, Road Directorate, Ministry of Transport, Denmark.
12. L. Mejlbro, The complete solution of Fick's second law of diffusion with time-dependent diffusion coefficient and surface concentration, Durability of concrete in saline environment, Cementa AB, Dandcryd Sweden, 127-158, (1996).
13. J. M. Frederiksen, L. Mejlbro, L-O. Nilsson. Ficks 2nd Law – Complete Solutions for Chloride Ingress into Concrete – with Focus on Time Dependent Diffusivity and Boundary Condition, Report TVBM-3146, Div. of Building Materials, Lund University, Sweden, 2008.
14.  DuraCrete, Modelling of Degradation.EU-Project(BriteEuRamⅢ)No.BE95-1347. Probabilistic Performance based Durability Design of Concrete Structures[R]. Report, Vol. 4-5, 1998.
15. NT BUILD 492. Concrete Hardened: Accelerated Chloride Penetration. 1992.
16. P. Golterman. Chloride ingress: modelling, sampling and predicting service life. International RILEM Symposium on concrete modeling (ConMod08), Delft, RILEM PRO 58, pp. 753-760.
17. L-O Nilsson. Models for chloride ingress into concrete-from Collepardi to today. Int. J. Modelling, Identification and Contro, 7(2), 2009.
18. O. Houdusse, H. Hornain, G. Martinet. Prediction of long-term durability of Vasco de Gama Bridge in Lisbon. Proceedings of the 5th CANMET/ACI International conference, Vol. 11, 192-200, Barcelona, Spain, 2000.
19. http://www.silicafume.org/specifiers-lifecycle.html
20. Tang L. Chloride transport in concrete: Measurement and predictions, Chalmers University of Technology, Publication, (1996).
21. I. Yoon. Reaction experimental study on chloride binding behavior in cement composition. 2nd International Symposium on service life design for infrastructure. 4-6 October 2010. Delft, The Netherlands.
22. M.V.A. Marinescu, H.J.H. Brouwers. Free and bound chloride contents in cementitious materials. 8th fib PhD Symposium in Kgs. Lyngby, Denmark. June 20 – 23, 2010.
23. Justnes H. A review of chloride binding in cementitious systems. Nord Concr Res 1998;21:1–6.
24. J. Skopp. Derivation of the Freundlich Adsorption Isotherm from Kinetics. J. Chem. Educ., 2009, 86 (11), p 1341. DOI: 10.1021/ed086. p1341.
25. C. G. Suits, M. J. Martin. Irvin Langmuir: 1881-1957. national academy of sciences. Washington d.c. 1974.
26. O. Truc. Prediction of chloride penetration into saturated concrete-Multi-species approach. Chalmers University of Technology, Goteborg Sweden, INSA Toulouse, France, 2000.
27. L. Y. Li, C. L. Page, Finite element modeling of chloride removal from concrete by an electrochemical method, Corrosion Science, 2000, 42, 2145-2165.
https://doi.org/10.1016/S0010-938X(00)00044-5
28. J. Marchand, Modeling the behavior of unsaturated cement systems exposed to aggressive chemical environments, Materials and Structures, 2001, 34, 195-200.
https://doi.org/10.1007/BF02480588
29. T.Q. Nguyen, V. Baroghel-Bouny, P. Dangla. Prediction of chloride ingress into saturated concrete on the basis of a multi-species model by numerical calculations. Computers and Concrete. 3(6) · December 2006. DOI: 10.12989/cac.2006.3.6.401.
https://doi.org/10.12989/cac.2006.3.6.401
30. P. Bazant. Electrochemical Energy Systems (PDF). (2005).
31. J. M. R. L. Marriaga. Transport properties and multi-species modelling of slag based concretes. Thesis dissertation presented at Coventry University, December 2009.
32. Andrade, C. Calculation of Chloride Diffusion Coefficients in Concrete From Ionic Migration Measurements. Cement and Concrete Research, Vol. 23, No, 3, pp. 724-742, 1993
https://doi.org/10.1016/0008-8846(93)90023-3
33. Q. Yuan, C. Shi, G. De Schutter, D. Deng, F. He. Numerical Model for Chloride Penetration into Saturated Concrete. J. Mater. Civ. Eng. 2011.23:305-311.
34. Marchand, J., Samson, E. and Beaudoin, J.J. (2002) Modeling ion transport mechanisms in unsaturated porous media, M. Dekker Publisher, New York, USA.
35. J. Marchand, E. Samson, Y. Maltais, R.J. Lee. Predicting the performance of concrete structures exposed to chemically aggressive environments-Field validation. 2nd Material Specialty Conference of the Canadian Society for civil engineering. June 5-8, 2002.
https://doi.org/10.1007/bf02480355
36. Y. Feng, X. Li, L. Boersma. The Arrhenius Equation as a Model for Explaining Plant Responses to Temperature and Water Stresses. Ann Bot (1990) 66 (2): 237-244.
37. Q. Yuan, C. Shi, G. De Schutter, K. Audenaert. Effect of temperature on transport of chloride ions in concrete. Concrete Repair, Rehabilitation and Retrofitting II – Alexander et al (eds) © 2009 Taylor & Francis Group, London, ISBN 978-0-415-46850-3.
38. S. Hyoung-Seok et al. The properties of chloride ion diffusion of concrete under high temperature conditions, with implications for the storage of spent nuclear fuel in concrete casks. KSCE Journal of Civil Engineering, November 2014, Volume 18, Issue 7, pp 2227-2233.
39. NTBuild 443, CONCRETE, HARDENED: ACCELERATED CHLORIDE PENETRATION, NORDTEST, (1995).
40. AASHTO T 259-02 (2012). Standard Method of Test for Resistance of Concrete to Chloride Ion Penetration STANDARD by American Association of State and Highway Transportation Officials, 2002.
41. O. Truc, J.P. Ollivier, M. Carcassès. A new way for determining the chloride diffusion coefficient in concrete from steady state migration test. Cement and Concrete Research. 30(2), February 2000, 217–226. doi:10.1016/S0008-8846(99)00232-X.
https://doi.org/10.1016/S0008-8846(99)00232-X
42. L. Tang, L-O. Nilsson. Rapid Determination of the Chloride Diffusivity in Concrete by Applying an Electric Field. ACI Materials Journal. 89(1). 49-53. January 1993. 10.14359/1244.
https://doi.org/10.14359/1244
43. ASTM C 1202-97. Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, Annual Book of ASTM Standards, 4(2), 639–644.
44. P. Longuet, L. Burglen, A. Zelwer. La phase liquide du ciment hydraté, Matériaux et Construction, 35-71, 1973.
45. R.J. Van-Eijk, H.J.H. Brouwers. Prediction of hydroxyl concentrations in cement pore water using a numerical cement hydration model. Cement and Concrete Research. 30(2000) 1801-1806.
https://doi.org/10.1016/S0008-8846(00)00413-0
46. Nordic Mini Seminar & fib TG 5.5 meeting. PREDICTION MODELS FOR CHLORIDE INGRESS AND CORROSION INITIATION IN CONCRETE STRUCTURES. Göteborg, May 22-23, 2001.
47. Thomas, M.D.A. and Bamforth, P.B., "Modelling chloride diffusion in concrete: Effect of flyash and slag." Cement and Concrete Research, Vol. 29, No. 4, April 1999.
https://doi.org/10.1016/S0008-8846(98)00192-6
48. E. Poulsen, L. Mejlbro. Diffusion of Chloride in Concrete: Theory and Application. CRC Press, Feb 25, 2010 - Architecture - 480 pages.
49. J.M. Frederiksen, L. Mejlbro, E. Poulsen. The HETEK model of chloride ingress into concrete made simpler by approximations. Second International RILEM Workshop on Testing and Modelling the Chloride Ingress into Concrete. Editor(s): C. Andrade and J. Kropp. RILEM Publications SARL. 2000. 317 - 336.
50. D. P. Bentz, J. R. Clifton, K. A. Snyder. Predicting Service life of chloride-exposed steel-reinforced concrete. Concrete International. December 1996. 42-47.
51. M. A. Ehlen, M. D.A. Thomas, E. C. Bentz. Life-365 Service Life Prediction ModelTM Version 2.0. Concrete International. 31(5). 41-46.
52. K.D. Stanish, R.D. Hooton, M.D.A. Thomas. Testing the Chloride Penetration Resistance of Concrete: A Literature Review. Department of Civil Engineering, University of Toronto, Toronto, Ontario, Canada. FHWA Contract DTFH61-97-R-00022.
53. O. Truc. Prediction of Chloride Penetration into Saturated Concrete Multi-Species Approach. Thesis dissertation. Chalmers University of Technology, 2000.
54. O. Truc, J-P Ollivier, L-O Nilsson. Numerical simulation of multi-species transport through saturated concrete during a migration test — MsDiff code. Cement and Concrete Research, 30(10), October 2000, Pages 1581–1592, doi:10.1016/S0008-8846(00)00305-7.
https://doi.org/10.1016/S0008-8846(00)00305-7
55. Björn Johannesson. A Theoretical Model Describing Diffusion of a Mixture of Different Types of lons in Pore Solution of Concrete Coupled to Moisture Transport. Division of Building Materials. LUND Institute of Technology. 2000.
56. C. Andrade, J. Kropp. PRO 19: 2nd International RILEM Workshop on Testing and Modelling the Chloride Ingress into Concrete. Volume 19 of RILEM proceedings. RILEM publications. RILEM Publications, 2001.
57. E. Samson. STADIUM model: Technical basis. Cementitious Barriers Partnership SIMCO Technologies Inc. August 2014.
58. P. Spiesz, H.J.H. Brouwers. The apparent and effective chloride migration coefficients obtained in migration tests. Cement and Concrete Research 48 (2013) 116–127.
https://doi.org/10.1016/j.cemconres.2013.02.005
59. Martin-Pérez, B., Pantazopoulou, S.J., Thomas, M.D.A., Numerical solution of mass transport equations in concrete structures. Computers & Structures, v. 79, no. 13, May 2001, pp. 1251-1264.
https://doi.org/10.1016/S0045-7949(01)00018-9

Published
2017-02-20
How to Cite
KHITAB, Anwar; ANWAR, Waqas; ARSHAD, Mohammad Tausif. Predictive Models of Chloride Penetration in concrete: An Overview. MUST Journal of Engineering and Applied Sciences, [S.l.], v. 1, n. 1, p. 1-14, feb. 2017. Available at: <http://www.archyworld.com/journals/index.php/mjeas/article/view/2>. Date accessed: 21 aug. 2017. doi: https://doi.org/10.22496/mjeas20170103.
Section
Reviews