Simulation of the Electrical and Thermal Properties of Graphene Field Effect Transistor

  • Arin Dutta
  • Fathema Farjana
  • Md. Siddukur Rahman
  • Zahid Hasan Mahmood

Abstract

In this research work, the electrical and thermal properties of Graphene field effect transistor (GFET) has been simulated by varying the width of graphene channel. Here, the electrical characteristics, like electron density, hole density, I-V Characteristics and charge carrier velocity profile in the channel region has been studied for three different values of graphene channel width- 1 nm, 2 nm and 3 nm. To analyze the thermal properties of the GFET device, the temperature profile of the graphene channel has been simulated for 1, 2 and 3 nm channel width. After analyzing the simulation of this characteristics, it is concluded that, both electrical and thermal properties of GFET can be improved by fabricating the channel with larger width in the GFET device.

References

1 R. Chau, S. Datta, M. Doczy, B. Doyle, B. Jin, J. Kavalieros, A. Majumdar, M. Metz, M. Radosavljevic. "Benchmarking Nanotechnology for High-Performance and Low-Power Logic Transistor Applications", IEEE Trans. Nanotechnology, Vol. 4, No. 2, 2005.
https://doi.org/10.1109/TNANO.2004.842073
2 Y.-M. Lin, J. Appenzeller, C. Zhihong, Z.-G. Chen, H.-M. Cheng, P. Avouris, "High-performancedual-gate carbon nanotube FETs with 40-nm gate length", IEEE Electron Dev. Lett., Vol. 26, No. 11, 2005.
3 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films", Science, Vol. 306, pp. 666-669, October 2004.
https://doi.org/10.1126/science.1102896
PMid:15499015
4 Y.Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, "Experimental observation of the quantum Hall effect and Berry's phase in graphene", Nature, Vol. 438, pp. 201-204, November 2005.
https://doi.org/10.1038/nature04235
PMid:16281031
5 Cervenka, J. et al. Graphene field effect transistor as a probe of electronic structure and charge transfer at organic molecule-graphene interfaces, Nanoscale 7, 1471–1478, 2014.
https://doi.org/10.1039/C4NR05390G
PMid:25502349
6 Lee, S. K. et al. Inverse transfer method using polymers with various functional groups for controllable graphene doping. ACS Nano 8, 7968–7975, 2014.
https://doi.org/10.1021/nn503329s
PMid:25050634
7 Song, H. S. et al. Origin of the relatively low transport mobility of graphene grown through chemical vapor deposition. Sci. Rep. 2, 337, 2012.
https://doi.org/10.1038/srep00337
PMid:22468224 PMCid:PMC3313616
8 Batzill, M. The surface science of graphene: metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf. Sci. Rep. 67, 83–115, 2012.
https://doi.org/10.1016/j.surfrep.2011.12.001
9 Kumar, B. et al. The role of external defects in chemical sensing of graphene field-effect transistors. Nano Lett. 13, 1962–1968, 2013.
https://doi.org/10.1021/nl304734g
PMid:23586702
10 Connelly, L. S. et al. Graphene nanopore support system for simultaneous highresolution afm imaging and conductance measurements. ACS Appl. Mater. Interfaces 6, 5290–5296, 2014.
https://doi.org/10.1021/am500639q
PMid:24581087 PMCid:PMC4232248
11 Levesque, P. L. et al. Probing charge transfer at surfaces using graphene transistors. Nano Lett. 11, 132–137, 2011.
https://doi.org/10.1021/nl103015w
PMid:21141990
12 B. Lee, S. Y. Park, H. C. Kim, K. J. Cho, E. M. Vogel, M. J. Kim, R. M.Wallace, and J. Kim, Appl. Phys. Lett. 92, 203102, 2008.
https://doi.org/10.1063/1.2928228
13 Y. Xuan, Y. Q. Wu, T. Shen, M. Qi, M. A. Capano, J. A. Cooper, and P. D.Ye, Appl. Phys. Lett. 92, 013101, 2008.
https://doi.org/10.1063/1.2828338
14 Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, andP. Avouris, NanoLett. 9, 422, 2009.
https://doi.org/10.1021/nl803316h
PMid:19099364
15 Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726, 2010.
https://doi.org/10.1038/nnano.2010.172
PMid:20729834

Simulation of the Electrical and Thermal Properties of Graphene Field Effect Transistor
Published
2017-02-28
How to Cite
DUTTA, Arin et al. Simulation of the Electrical and Thermal Properties of Graphene Field Effect Transistor. Journal of Energy Technology Research, [S.l.], v. 1, n. 1, p. 13-18, feb. 2017. ISSN 2514-4715. Available at: <http://www.archyworld.com/journals/index.php/jetr/article/view/41>. Date accessed: 21 aug. 2017. doi: https://doi.org/10.22496/jetr2016091479.
Section
Articles

Most read articles by the same author(s)