Soil moisture estimation in Chambal irrigation command using C-band HH polarization multi-incidence angle Radarsat-1 SAR and IRS LISS III data

  • Dibyendu Dutta
  • Abhishek Chakraborty
  • Pragyan Jain

Abstract

Soil moisture is one of the key variables in agricultural water management, particularly in scheduling of irrigation in the major irrigation commands. Several studies have been carried out for modelling of soil moisture using synthetic aperture radar (SAR) which is sensitive to soil dielectric permittivity. However, two critical factors viz. random surface roughness and vegetation cover introduces complexities in the precise estimation of soil moisture. The estimation is further constrained when using single configuration SAR. In the present study, microwave and optical synergy were used wherein soil moisture in the Chambal Irrigation Command, India during 2002-03 winter season, was modelled in two steps. In the first step the surface roughness was modelled taking advantage of multi-incidence angle image acquisition by Radarsat-1 within a short temporal interval with the assumption that the soil moisture has not significantly changed. An output called ‘Roughness Normalized Backscatter Coefficient’ (RNBS) was generated which was used subsequently to correct the vegetation effect. In the second step RNBS was plotted against the normalized difference vegetation index (NDVI) generated from IRS-LISS III sensor as a function of volumetric soil moisture. Based upon the relation between RNBS and NDVI, several polynomial models at different moisture levels were generated and applied to the RNBS image to generate different regimes of soil moisture. The modelled soil moisture was validated based upon the independent samples collected from the field. The proposed methodology is found to be applicable under fallow and sparsely vegetated conditions where the NDVI is less than 0.4.

References

1. Brocca, L., Melone, F., Moramarco, T., Wagner, W., Naeimi, V., Bartalis, Z., and Hasenauer, S. Improving runoff prediction through the assimilation of the ASCAT soil moisture product. Hydrol. Earth. Syst. Sc. 2010, 14, 1881–1893.
https://doi.org/10.5194/hess-14-1881-2010
2. Dubois, P.C., Van Zyl, J., and Engman, E.T. Measuring soil moisture with imaging radar. IEEE Trans. Geosci. Remote Sens. 1995, 33(4), 915-926.
https://doi.org/10.1109/36.406677
3. Oh, Y., Sarabandi, K. and Ulaby, F.T. An empirical model and an inversion technique for radar scattering from bare soil surfaces, IEEE Trans. Geosci. Remote Sens. 1992, 30, 370-382.
https://doi.org/10.1109/36.134086
4. Shi, J., Wang, J., Hsu, A.Y., O'beukk, E.O. and Engman, E.T. Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1254-1266.
https://doi.org/10.1109/36.628792
5. Fung, A.K., Lee, Z., and Chen, K.S. Backscatter from a randomly rough dielectric surface. IEEE Trans. Geosci. Remote Sens. 1992, 30(2), 356-369.
https://doi.org/10.1109/36.134085
6. Baghdadi, N., Gherboudj, I., Zirbi, M., Sahebi, M., King, C., and Bonn, F. Semi-empirical calibration of the IEM backscattering model using radar images and moisture and roughness field measurements. Int. J. Remote Sens. 2004, 25(18), 3593−3623.
https://doi.org/10.1080/01431160310001654392
7. Bindlish, R., and Barros, A. P. Multi-frequency soil moisture inversion from SAR measurements with the use of IEM. Remote Sens. Environ. 2000, 71, 61−88.
https://doi.org/10.1016/S0034-4257(99)00065-6
8. Oldak, A., Jackson, T., Starks, P., and Elliott, R. Mapping near-surface soil moisture on a regional scale using ERS-2 SAR data. Int. J. Remote Sens. 2003, 24(22), 4579−4598.
https://doi.org/10.1080/0143116031000070463
9. Hajnsek, I., Jagdhuber, T., Schon, H., and Papathanassiou, K. P. Potential of estimating soil moisture under vegetation cover by means of PolSAR, IEEE Trans. Geosci. Remote Sens. 2009, 47, 442–454.
https://doi.org/10.1109/TGRS.2008.2009642
10. Shoshany, M., Svoray, T., Curran, P. J., Foody, G. M., and Perevolotsky, A. The relationship between ERS-2 SAR backscatter and soil moisture: generalization from a humid to semi-arid transect. Int. J. Remote Sens. 2000, 21(11), 2337−2343.
https://doi.org/10.1080/01431160050029620
11. Lievens, H., Vernieuwe, H., Alvarez-Mozos, J., De Baets, B., and Verhoest, N. E. C. Error in radar-derived soil moisture due to roughness parameterization: an analysis based on synthetic surface profiles, Sensors 2009, 9, 1067–1093.
https://doi.org/10.3390/s90201067
12. Joseph, A. T., van-der Velde, R., O'Neill, P. E., Lang, R., and Gish, T. Effects of corn on C- and L-band radar backscatter: A correction method for soil moisture retrieval, Remote Sens. Environ. 2010, 114, 2417–2430.
https://doi.org/10.1016/j.rse.2010.05.017
13. Le Toan, T., Davidson, M., Mattia, F., Borderies, P., Chenerie, I., Manninen, T. Improved observation and modelling of bare soil surfaces for soil moisture retrieval. Special issue: Retrieval of bio-and geo-physical parameters from SAR data for land applications. Papers from the 2nd International Workshop, Noordwijk, Netherlands, 21-23 October 1998. Earth-Observation-Quarterly, 1999, No. 62, 20-24.
14. Bryant, R., Moran, M.S., Thoma, D., Holifield Collins, C.D., Skirvin, S.M., Rahman, M., Slocum, K., Starks, P.J., Bosch, D.D., Gonzalez-Dugo, M.P. Measuring surface roughness height to parameterize radar backscatter models for retrieval of surface soil moisture. IEEE Geosci. Remote Sens. Lett. 2007, 4(1): 137-141.
https://doi.org/10.1109/LGRS.2006.887146
15. Zirbi, M., and Dechambre, M. A new empirical model to retrieve soil moisture and roughness from C-band radar data. Remote Sens. of Environ. 2002, 84, 42-52.
https://doi.org/10.1016/S0034-4257(02)00069-X
16. Srivastava, H.S., Patel, Sharma, P. Y., and Navalgund, R.R. Large-area soil moisture estimation using multi-incidence-angle RADARSAT-1 SAR data. IEEE Trans. Geosci. Remote Sens. 2009, 47 (8), 2528–2535.
https://doi.org/10.1109/TGRS.2009.2018448
17. Panciera, R., Walker, J.P., and Merlin, O. Improved understanding of soil surface roughness parameterization for L–B and passive microwave soil moisture retrieval. IEEE Trans. Geosci. Remote Sens. 2009, 6 (4), 625–629.
https://doi.org/10.1109/LGRS.2009.2013369
18. Wang, S. G., Li, X., Han, X. J., and Jin, R. Estimation of surface soil moisture and roughness from multi-angular ASAR imagery in the Watershed Allied Telemetry Experimental Research (WATER). Hydrol. Earth Syst. Sci. 2011, 15, 1415–1426.
https://doi.org/10.5194/hess-15-1415-2011
19. Qi, J., Chehbouni, A., Huete, A.R., Herr, Y., and Soroshian, S. A modified soil adjusted vegetation index (MSAVI). Remote Sens. Environ. 1994, 48, 119-126.
https://doi.org/10.1016/0034-4257(94)90134-1
20. Black, C.A. Methods of Soil Analysis, Part 1, American Society of Agronomy 1965, No. 9.
21. Ulaby, F.T., Batlivala, P.P., and Dobson, M.C. Microwave backscatter dependence on surface roughness, soil moisture and soil texture, part I bare soil. IEEE Trans. Geosci. Electron. 1978, GE-16:286-295.
https://doi.org/10.1109/TGE.1978.294586
22. Ulaby, F.T., Bradley, G.A., and Dobson, M.C. Microwave backscatter dependence on surface roughness, soil moisture and soil texture, part II vegetation-covered soil. IEEE Trans. Geosci. Electron. 1979, GE-17:33-40.
https://doi.org/10.1109/TGE.1979.294626
23. Ulaby, F.; Moore, R.K., and Fung, A.K. Microwave Remote Sensing: Active and Passive, Vol. III, Arte House, Dedham, MA, 1986.
24. Dobson, M.C., Ulaby, F.T. Microwave backscatter dependence on soil roughness, soil moisture and soil texture: Part III soil tension, IEEE Trans. Geosci.Remote Sens. 1981, 19, 51-61.
https://doi.org/10.1109/TGRS.1981.350328
25. Qi, J., Wang, C., Inoue, Y., Zhang, R., and Gao, W. Synergy of optical and radar remote sensing in agricultural application, Recent advances in global change research, N.RA02-03/W, Autumn 2003.
26. Dobson, M. C., and Ulaby, F. T. Mapping soil moisture distribution with imaging radar. In F. M. Henderson, & A. J. Lewis (Eds.), Principles and applications of imaging radar, Manual of remote sensing 1998, 3rd ed., vol. 2 (pp. 408–432). John Wiley & Sons Inc.
27. Wang, Y., Kasischke, E. S., Melack, J. M., Davis, F. W., and Christensen Jr., N. L. The effects of changes in loblolly pine biomass and soil moisture on ERS-1 SAR backscatter. Remote Sens. Environ. 1994, 49, 25– 31.
https://doi.org/10.1016/0034-4257(94)90056-6
28. Wang, C., Qi, J., Moran, S., and Marsett, R. Soil moisture estimation in a semiarid rangeland using ERS-2 and TM imagery. Remote Sens. Environ. 2004, 90, 178-189.
https://doi.org/10.1016/j.rse.2003.12.001
29. Gupta, V.K., and Jangid, R.A. Microwave response of rough surfaces with auto-correlation functions, RMS heights and correlation lengths using active remote sensing. Ind. J. Radio and Space Physics 2011, 40, 137-146.
30. Rahman, M.M., Moran, M.S., Thoma, D.P., Bryant, R., Holifield Collins, C.D., Jackson, T., Orr, B.J., and Tischler, M. Mapping surface roughness and soil moisture using multi-angle radar imagery without ancillary data. Remote Sens. Environ. 2008, 112, 391-402.
https://doi.org/10.1016/j.rse.2006.10.026
31. Srivastava, H. S., Patel, P., Manchanda, M. L. And Adiga, S. Use of multi-incidence angle RADARSAT-1 SAR data to incorporate the effect of surface roughness in soil moisture estimation. IEEE Trans. Geosci.Remote Sens. 2003, 41 (7), 1638-1640.
https://doi.org/10.1109/TGRS.2003.813356
32. Jackson, T.J., Kostov, K.G., and Saatchi, S.S. Rock fraction effects on the interpretation of microwave emission from soil. IEEE Trans. Geosci.Remote Sens. 1992, 30(3), 610-616.
https://doi.org/10.1109/36.142939
33. Moran, M. S., Vidal, A., Troufleau, D., Qi, J., Clarke, T. R., Pinter Jr., P. J., Mitchell, T. A., Inoue, Y., and Neale, C. M. U. Combining multi-frequency microwave and optical data for crop management. Remote Sens. Environ. 1997, 61, 96– 109.
https://doi.org/10.1016/S0034-4257(96)00243-X
34. Thoma, D. P., Moran, M. S., Bryant, R., Rahman, M., Holifield-Collins, C. D., and Skirvin, S. Comparison of four models to determine surface soil moisture from C-band radar imagery in a sparsely vegetated semiarid landscape. Water Resour. Res. 2006, 42, W01418.
https://doi.org/10.1029/2004WR003905

Soil moisture estimation in Chambal irrigation command using C-band HH polarization multi-incidence angle Radarsat-1 SAR and IRS LISS III data
Published
2017-02-28
How to Cite
DUTTA, Dibyendu; CHAKRABORTY, Abhishek; JAIN, Pragyan. Soil moisture estimation in Chambal irrigation command using C-band HH polarization multi-incidence angle Radarsat-1 SAR and IRS LISS III data. Journal of Agricultural Science Research, [S.l.], v. 1, n. 1, p. 11-24, feb. 2017. Available at: <http://www.archyworld.com/journals/index.php/jasr/article/view/86>. Date accessed: 21 aug. 2017. doi: https://doi.org/10.22496/jasr20170211143.
Section
Articles